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PROPAGATION OF CYLINDRICAL AND SPHERICAL
ELASTIC WAVES BY METHOD OF CHARACTERISTICS
by Pei Chi Chou and Herbert Abraham Koenig
Drexel Institute of Technology
Philadelphia, Pa.
SUMMARY

A set of generalized equations is presented which governs the propagation
of plane, cylindrical and spherical dilatation waves in elastic media. The cor-
responding characteristic equations are then derived, including the propaga-
tion of abrupt changes (discontinuous wave fronts). Procedures of numerical
integration along the characteristic directions are established and carried out
for several examples on an electronic computer. The solutions of four of the
specific examples calculated show excellent agreement with existing solutions
by other methods. Certain interesting phenomena have been discussed which
may have considerable significance in dynamic crack propagation and dynamic

strength of materials.
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SYMBOLS

wave speed

bar velocity = /Eo/p

dilatational velocity = [JE_(1-24)/[P(1+w)(1- 2w)]

plate velocity = JEo/ P(1 - V7))
Modulus of Elasticity

E/(1-v2)

Ej(1 = v )/(1 - vy - 2v,9)

arbitrary constant

time for a ramp input to reach its maximum value
constant which determines nature of problem
initial pressure at hole

radial distance

inner radius of solid

r/ro

time

radial displacement

du/3t = particle velocity

v/e

modifying constant

Poisson's ratio

v/ (L - v)

radial stress

tangential stress

o/E

ct/ro

density vi



I, INTRODUCTION

Recently, considerable interest has been centered on the
protection of the fuel tank and other parts of a space vehicle
against meteoroid impact. The structural walls of space vehicles
are subject to the hazard of meteoroid penetration. In addition,
the wall of the fuel tank must be able to withstand the high pressure
created by a high speed projectile after entering the tank., From
an analytical point of view, these problems can be treated as a thin
plate with a hole subjected to dynamic loading at the edge of the
hole,

The theoretical analysis of transient stresses due to impact
loadings has generally been performed by a mode-superposition method
that uses the natural modes of vibration predicted by elementary
theory. For very sharp impact loadings, however, this approach is
not satisfactory because many modes are often required for conver-
gence, A natural alternative to the modal method of calculating
transient stresses is the method of characteristics., Although this
method has been successfully used to treat such simple problems as
longitudinal and torsional impact of rods, only recently have
serious attempts been made to study the transient response of more
complicated structures by this approach, Leonard and Budiansky [1]
derived the characteristic equations for the Timoshenko beam, including
transverse shear effect and rotary inertia. They also derived the
equations governing the propagation of discontinuities and performed
numerical integration along the characteristics for a few specific
examples, Following the same general approach, Jahsman [2] derived

1



the characteristic equations for circular sheets and plates under
very general loading conditions at an inner hole, He obtained the
relations between the various stresses at the wave fronts due to
abrupt inputs (step inputs), but did not solve the characteristic
equations for the distribution of stresses behind the fronts,

In this report, the problem of a circular shéet under dynamic-
in-plane loading at an inner hole is solved by the method of
characteristics, There are two purposes for solving this problem;
first, we are interested in developing the method of characteristics
so that it may be applied later to other more complicated plate
equations including the effects of bending, stretching, and
shearing, Second, the solution obtained in this report for sheets
under in-plane loading has direct engineering applications. The
governing equations for the sheet problems are of the same general
form as those for plane strain problems and for spherical sym-
metrical problems, Although different techniques are involved in
solving these three types of problems by the Laplace transform
method, they can be treated by the same approach in the method of
characteristics, In this report, therefore, a set of generalized
equations is formulated which is applicable to plane waves,
cylindrical waves (plane stress or plane strain), and spherical
waves, A few specific examples of sheets and spheres under various
inputs are solved by the method of characteristics,

The problem of a circular sheet under a suddenly applied radial
stress at an inner hole was solved by Kromm [3], using the Laplace
transform method, In a subsequent paper [4], by using the same

approach, he also solved the problem of a sheet under a step velocity
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input, Miklowitz [5] obtained a solution for a ramp radial stress
input by the Laplace transform method with a different inversion
technique, The corresponding plane strain problem for a thick wall
cylinder was analyzed by Selberg [6]. In these four cases of plane
stress and plane strain problems, the solutions are in the form of
integrals which must be evaluated by either infinite series or by
approximate numerical integration, For a different input function,
another lengthy transform and inversion process must be carried out
and the resulting integral evaluated separately by numerical means,
Thus the Laplace transform method applied to cylindrical dilatational
wave problems can only produce approximate numerical results and

is not convenient for systematic study of the effects due to various
input functions, On the other hand, the method of characteristics,
although numerical in nature, as will be shown in this report, is
very simple and easy to apply, and suitable for problems of any type
of input functions,

For the problem of spherical dilatational waves in hollow
spheres, closed form analytical solutions exist, The classical
theory and the general solution for spherical elastic waves are
treated in textbooks such as Kolsky [7]. Hopkins [8] formulated
the characteristic equations for spherical elastic and plastic waves,
including shock waves in the plastic region, but did not carry out
the solution for any specific problem, Sharpe[9] obtained analytical
closed form solutions for both an exponential pressure input and a
step pressure input. Allen and Goldsmith [10] carried out extensive
numerical calculations for the solution of the exponential input by

Sharre, The same problem is treated in this report by the method of



characteristics and numerical results almost identical to those of
Allen and Goldsmith are obtained,

For practical spherical wave problems such as those due to
underground explosions and due to hypervelocity impacts, the inputs
are usually irregular functions and must be expanded into infinite
series form before the closed form analytical solution for simple
input functions can be used, as discussed by Kinslow [11]. For
these problems, the numerical method of characteristics is again
more convenient,

It has just come to the authors' attention that very recently
(1964) in Poland, Perzyna and Bejda [12] applied the method of
characteristics to spherical stress waves in plastic medium; and
Kaliski, Nowacki, and Wlodarczyk [13] used the same method in
treating propagation and reflection of a spherical wave in an
elastic-visco-plastic strain-hardening body. They followed in
general the approach discussed by Hopkins [8].

In the following pages, the unified equations for plane,
cylindrical, and spherical elastic waves are presented, The
characteristic equations are then derived, including the relations
governing the propagation of discontinuities. Specific examples with
various input functions are then solved by integrating along the
characteristic lines, The calculations are performed on an electronic
computer, For the few examples where solutions by other methods
exist, our results are in excellent agreement with solutions by other
techniques, Because of the simplicity of the present method, solutions
for many inputs are calculated, From these solutions, many interesting

phenomina have been discovered,



Currently, this method is being extended to media with variable
elastic properties and exterior boundaries, It is also being applied

to the plate bending problenm,
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II. Governing Equations

One-dimensional elastic dilatational waves, including plane,
cylindrical and spherical waves, can be analyzed by one set of

generalized equations, As derived in Appendix A, these equations

are
a0 N(T- -ds) _ 9%u
3 * r - £ 9t% (1)
2 = L (G - Nvgp) ©)
N% = LE\EL [Je[l—(kl*l)v]'— 20, (3)

where r is the coordinate and u the displacement, both in the
direction of the wave propagation; t is time; p is density; oL
and oy are the normal stresses on planes parallel and normal to
the wave front, respectively; E and v are generalized elastic con-
stants to be defined below, In these equations, N is a constant,
with values of zero, one, and two, corresponding to the plane,
cylindrical and spherical waves, respectively., For plane waves,

N = 0, v vanishes from eqs. (1), (2), and (3), but E can assume

three different values depending on the geometry of the medium:

E = Eo = Modulus of Elasticity for bars 4)

E=E = _ﬁ_.é for sheets  (5)
! I =,

E=E,6 = M for infinite (6)
2 | =Y, -2% bodies

where v, is the Poisson's ratio, For cylindrical waves, N = 1,
the constants E and v can assume two sets of values depending on

the geometry of the problem:
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m
)

For sheets (plane stress) (7)
= 1)0
E = E,
_ _ Yo For infinite bodies
Y = 7)l - | - Yo (plane strain) (8)

Spherical waves can only exist in infinite bodies; thus we have

for N = 2 only one set of values for E and v,

E = E,

For infinite bodies (9)
v o= g,
Eliminating o and g from eqs. (1), (2), and (3), we obtain
2%u ﬁ_(_u_) = 1 24U (10)
D2 + N r\r Cc? gtz

which is the governing differential equation in terms of u. The

values of ¢, the wave propagation velocity, for various cases, are

EQ — bar velocity--for plane

C = G = P waves in bars (1)
/ Eo .
c = C = [|—7——%, — DPlate velocity--for plane
P .P("‘)Q ) and cylindrical waves (12)
in sheets

c = c. = Eo(t -2,) — dilatational velocity--

4 PU -y _2))9-) for plane, cylindrical

e o and spherical waves in
infinite bodies (13)



For plane waves, the general solution of eq. (10) is the
familiar d'Alembert's solution involving waves of constant amplitude,
Hence, only cylindrical and spherical waves will be considered below.

Eq. (10), which is a second order differential equation with
one dependent variable u, is equivalent to the system of eqs. (1),
(2), and (3). -qu (10) is more convenient for the application of the
Laplace transform method [3]. For the method of characteristics,
it is advantageous to use the system of eqs. (1) to (3), because
the expressions for the boundary conditions are simpler when the

dependent variables are T Ogo and d3u/d9t, Differentiating egs. (2)

and (3) with respect to time, and letting v = 3u/3t, we have the

system of equations

Qe ———M = p 2 (14)

ar at
av = ay
ar E (_a_r Nv 2% (15)
Yy = _L -(N- - o dr
L = {at [1-(N-)v] - 2 at} (16)

This is a system of three linear first-order partial differential
equations with Orr Ogs and v as the dependent variables, These
equations will be shown to be hyperbolic and the corresponding

characteristic equations will be presented in the next section.



111, Method of Characteristics

A, Characteristic Equations

In the r,t-plane, certain curves might exist, aloﬁg which
the stresses and velocity are continuous, but the derivatives of
Ter Ogs and v are discontinuous., These curves will be called the
physical characteristics, (or simply, characteristics, or waves)

and the relation governing the variation of Ows Tg» and v along these

6
physical characteristics will be called characteristic equations,
which are usually called the hodograph characteristics in gas

dynamics, As shown in Appendix B, for the system of eqs. (14),

(15), and (16), the physical characteristics are

¥ o= +c

- dr _  _ (17)
I P c
I dr = O

The 1% characteristic represents propagation of the discontinuity
in the derivatives at velocity c, traveling to the right in the
r,t-plane. The I characteristic gives the propagation towards
the left, while II is a degenerate dynamic wave expressing condi-
tions along lines with r = constant., For homogeneous materials
of constant E and Voo the velocity of propagation ¢ is constant
throughout the medium and the physical characteristics are straight
lines of constant slope.,

The characteristic equations along 1" and I” are, respectively,

dcrl_ e fcdv = —N(Gr—cre)i-f:)cv[ I——N&:T)—J] %’-’- (18)



The characteristic equation along II is

d(]} - _ _ EV dt __|__
X, " {[' -] - K dcre] Y (19

Eq. (19) is merely a restatement of eq. (16), which gives the

static relation between the differentials of stresses and velocity

at any constant r,
B, Propagation of Discontinuity

The characteristic eqs. (18) and (19) are applicable for
continuous fields with possible discontinuity in the derivatives

of the variables G Ogs and v. Across the physical characteristics,

6
discontinuities in the variables themself may also exist, but these
will not be governed by eqs. (18) or (19). Discontinuity in T
T and v occurs when a finite step input (or jump input) in these
variables is applied at a particular r. The equations governing
the propagation of these discontinuities will be derived below

following the general procedure given by Leonard and Budiansky [1 ]

and Jahsman [2 ].

t

A +
- I I,
I;
dt C
v 8
A
e— dr
> r

Figure 1 Discontinuities Propagating Along
A I* Characteristic
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Let A and B be two points on a I  characteristic as shown in
Fig, 1, The two 1* characteristics passing through A and B are
represented by I; , and I; respectively. If a discontinuity of o

across I, exists, then o_, = o_, = 8o_ is finite but different from
1 TB TA r

zero as I; is allowed to approach II , or as dr approaches zero,

Writing eq. (18) (with the lower sign, for I") and integrating from

A to B, we have

B
(Gg = Ga) + P (Ve - Va) =/{-N(G'..—G'9)-vfcv[m'§‘__®]}£l;
A

or
§0. + pc dV = O (20)
since when dr » 0, the integrand contains bounded values of Os
Ogo and v, so that the right-hand side vanishes., Similarly,
integration along II from I; to I; (or from A to C) yields
§q = 5 [V - (N-0)V] &dg (21)

where

. s . + : +
Since the variations in oL and T along I2 are continuous, as I2

approaches II , and C approaches A and B, we have

Lim (Ge=Gra) = Lym (Trg = Gya) , <. (22)

Therefore, the value of 6cr in eq. (21) approaches the o, in
eq. (20), and represents the jump in o, at point A across I; .
The same is true for Goe and Sv,
The variation in amplitude of the functions 0., 8o, and 8v as

6
they propagate along 1" is obtained by writing eq. (18), with the

11



upper sign, along I; and I; , and subtracting one from the other,

As dr -+ 0, we have

d(86,) - ped(6v) =4 -N(30, - 50,)+ vpc EN[ | —(:—l)v] } d_\": (23)

Eliminating 606 and év by egqs. (20) and (21), yields

d(st) _ _ N dr o
aa, 2 r
This may be integrated to give
50 = Kr Ve (25)

where K is a constant. Substitution of this into eqs. (20) and
(21) then furnishes the equations for the variation of 609 and év,
Following the same procedure, the equations for discontinuities
across a I~ characteristic can also be derived. Therefore, for

. s + - s s
discontinuities across I and I characteristics, we have

§a = Kr 2 (25)

500 = [ rmcumyw ) Kr ™ (26)

SV = F - Kr'2 27)
pc

From these, it may be seen that discontinuities or abrupt changes
across cylindrical waves (N = 1) vary as r -1/2 when they propagate
inward or outward, This is in agreement with Kromm [ 4] and Jahsman
[ 2] for the case of sheets. For spherical waves, discontinuities

vary as r? , in agreement with the classical theory, [7] [ 8].
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C. Initial and Boundary Conditions

In this paper, the elastic body under consideration will be
either an infinite sheet with a circular hole, or an infinite
hollow cylinder, or an infinite hollow sphere, These configurations
can be represented by roLT <, where T, is a constant, Initially,
the body is not loaded, thus the stress and velocity are zero, As
time progresses, the input is applied at r = Tos either suddenly
or gradually., This input can be in the form of specified time function
of any one of three variables, Cor Tgs and v, at 1 = Tye In actual
cases, the application ofo6 load is not practical., Thus in the
following sections several types of input in terms of o and v are

presented,



IV. Numerical Procedures

A numerical procedure involving stepwise integration along the
characteristics is employed to solve problems of various inputs.
In the r,ct-plane, the region between r = r, and r = r,* ct is
divided into a grid system by the three physical characteristics.
The properties at each grid point will be calculated; thus, the

continuous domain is replaced by discrete points.

ct ) N\ I

\< o+ A 1-

X s

|
< Fsb,+ct
ar | Ar

o ro

Figure 2 Characteristic Network for Application
of Numerical Procedure

At a typical interior point 1, the three quantities Oy Tgs and v
can be calculated, if all the stresses and velocities at three
neighboring points 2, 3, and 4 are known. Between pointsl and 2,
along a it characteristic, eq. (18) with the upper sign is written
in finite-difference form, Along I~ from points3 to 1 and along II
from 4 to 1, the corresponding characteristic equations are also
expressed in finite-difference algebraic form, The three unknowns

Tps Ogs and v at point 1 can then be determined from these three

equations. 14



Along the line r = L where one of the three variables is
prescribed, the remaining two variables may be determined from the
two equations along the I~ and II characteristics, In the region
r>oTro+ ct, the stresses and velocity are zero, Along the line
r=r +ct, the stresses and velocity are also zero if the initial
input at r = ry is continuous (rather than a step input). If,
however, a discontinuous input (step input) is applied at r = r

o]

and t = 0, the values of O.s Tgs and v are different from zero along

6
T=r +ct and may be determined from eqs, (25), (26), and (27).
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V. Specific Examples

A few specific examples of sheets and spheres under various
inputs at r = T, are calculated and presented below. Results of
some of these examples will be compared with existing solutions
by other methods,

In presenting the results, nondimensional quantities are

introduced as follows:

Fr=r/vo, T=tc/v,, T=0d/E, V = V/c

H

Thus, the results are true for materials of any values of Eo and p
and for any value of Ty In all examples (except case I) 0.3 is
uscd for ‘o For the sheets (N =1, E = Eo’ v = vo), the examples
include a) a step function in O b) ramp functions in T s ¢c) a
rectangular function (impulsive) in 0. and d) a step function in
v, For spherical cases (N = 2), in addition to the step, ramp,
and rectangular inputs in 9. and step and ramp inputs in v, an
exponential input in ox is also calculated and compared with an

analytical closed form solution,
A, Step Sr Input in Sheets

This problem has been solved by Kromm [ 3] using the Laplace
transform method, Within the accuracy of curve plotting, our
results for a unit step 5r input, as shown in Fig. 3, agree exactly
with Kromm's, Figs., 3a, 3b, and 3c give the distributions of Er,
86
meter. The abrupt wave fronts in Er, 56, and v propagate outward

, and v, respectively, all plotted against 1, with T as a para-

at a velocity cp. The amplitude of these wave fronts attenuate
according to eqs. (25), (26), and (27). At large valuesof time,

16



the velocities at all radii approach zero and the stresses approach
their static values. Other properties of these curves have been

discussed by Kromm, An additional interesting point concerning

the behavior of o, at the hole (T = 1) may be mentioned. Immediately

6
after the application of the step 3r input, 86 becomes vOEr (0.3 in
s
this case), After a short time (vt = 3,88; or t = 4,75usec, forp:.ooonsﬂ%ff )

r, = 0.25 in,, E = 30 x 108 psi) G, decreases to a value of -1,24,
and then increases again to its static value of -1, This initial

positive value of o, and subsequent surge to a high negative value

6
have important implications in crack propagation and in dynamic

strength of materials,
B. Ramp Sr Inputs in Sheets

This is the exact problem of Miklowitz [ 5], who applied the
Laplace transform method in getting a solution. As mentioned before,
his solution is in the form of a lengthy quadrature which must be
evaluated by approximate numerical methods, Our results by the
method of characteristics, as shown in Fig. 4, are identical to his
results in graphical form. The slope of the ramp is taken as k = 2,04
which is equivalent to a "k" of 2,5usec., for r, = .25 in, and
Eo = 30 x 10% psi, (which are the values used in [5]). From Fig. 4
it can be seen that the initial positive value of Ge is less than
voar, the value for step input, The subsequent downward surge in
56 is also less than that due to the step input, The wave front
still propagates at a velocity of cp, but the stresses and velocity

increase gradually after the arrival of the front. At large values

of time, velocities at all radii become zero and the stresses approach

17



the static values for Er =1latr=1, To bring out some further
features of the response of a sheet to ramp inputs, a few cases
using different values of k are calculated and the results plotted
in Fig. 5. As the ramp becomes steeper (k decreasing), the solution
approaches that of a‘step input as a limit,

From a practical point of view, most inputs are gradually
applied, Also, since a step input always involves short length
waves from the normal mode point of view, the plane stress approxi-
mation is therefore not accurate. However, since the dynamic stresses
due to the step input are larger than those due to ramp inputs (or
other gradually applied inputs), solutions for the step input may
be used to establish upper bounds of dynamic responses to different

loading functions.
C. A Rectangular Sr Input in Sheets

The fact that, due to a step Sr input, the peak 56 at ¥ = 1 is
24 percent higher than the static value has been recognized by
Kromm, (For a ramp Er input with k = 2,04, the peak is 23 percent
higher, as shown in Fig. 4b) We shall bring out another interesting
and important fact about Er input functions, This is the case of a
rectangular Gr input, or a unit step Er input at t = 0 combined with
a negative unit step Sr input at t = 3.88, As shown in Fig. 6, this
is equivalent to an impulsive input involving a loading and unloading
process, Due to the initial positive value and then a negative surge
of 58 under the step Gr input, the peak Ee under the rectangular
input is 54 percent higher than the static value due to 5r =1 at

r = 1, as shown in Fig. 6b, If a radial crack exists at the hole

(r = 1), and if the crack propagation depends on only the magnitude

18



of 86, then a step compression input (Gr = =1) is more critical
than a static Gr load; and a rectangular input, with a width of
T = 3.88 is more severe than the step input, Fig, 6d is a schematic

sketch illustrating this point,

A Sheet with v, = 0,3

crack Oy = okunder static o

[

It

g, = 1.24 o_ under G
8 T _ I
dynamic step o. T

4

-l
gy = 1.54 o unger U, .
impulsive . 3.88T

Figure 6d Rectangular (Impulsive)
O Input

Under certain circumstances, a dynamic stress is not critical
in initiating crack propagation because of its short duration of
action, Under these circumstances a repeated rectangular load with
a period of 2 x 3.88, will be most critical for crack propagation,
The critical pressure (-or) will be 65 percent (1/1.54 = ,65) of
the static pressure that would be required to initiate the crack

propagation,

D, A Step v Input in Sheets

This is the second problem treated by Kromm [ 4], using the

Laplace transform method. Our results are presented in Fig. 7 in

19



the form of curves of Er, 39, and v plotted against 1, with T as a
parameter, Again, our results show complete agreement with Kromm's,
and the curves from the two methods coincide, Many interesting
features of the solution of this problem have already been discussed
by Kromm, These include the asymptotic behavior of the stresses;
the particular radius (r = 1,533) at which Er immediately behind

the wave front remains stationary; for r < 1,533, Br increases
monotonically, and for r > 1,533, Sr first decreases and then

increases,
E, Step Er Input in Hollow Spheres

Fig, 8 gives the result of a unit step Gr input applied at
the hole (T = 1) inside a sphere (N = 2, v, = 0.3), The general
behavior of the stresses and particle velocity is the same as that
of the sheet, The oscillation of Er, Se, and v at different T is
more pronounced than that for the sheet, The time required for the
stresses to reach their static values is a little longer., The
initial positive value of 36 is 0,429 = vo/(l - vo), in agreement
with eq., (26), Notice that this is much higher than 0,3, the value
for the sheet., Subsequently, the value of 56 surges to a value of
-0,75 at 1 = 2,26, and then approaches the static value of -0,5,
The peak 86 due to step Er input is, therefore, 50 percent above
the static value, This is also higher than the corresponding value
of 24 percent in the case of sheets, The time when the peak Ee
occurs, T = 2,26 (or t = 2,5 sec, for T, = 0,25 in, and Eo = 30 x
105 psi), is considerably sooner than t = 3,88, the corresponding

value for sheets,
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F. Ramp Er Input in Hollow Spheres

The results of this case are shown in Fig. 9., Comparing these
results with those shown in Fig. 8 due to a step Gr input, it can
be seen that the peak stresses (except Er at ¥ = 1) and peak
velocities at different r are smaller. The stresses and velocities
have less oscillation. In all curves, there are no sharp wave fronts,
The curves for Br and Vv are continuous but have discontinuities in
their derivatives with respect to time. These discontinuities are

propagated from the original input at T = 1, v = k, with a velocity c,.
G, A Rectangular Sr Input in Hollow Spheres

This is the impulsive input similar to the one discussed above
for sheets. As shown in Fig. 10b, the absolute value of the peak
59 is 1,18, which is 136% higher than the static value of 0,5. Thus

this case is even more severe than the impulsive loading in sheets,
H, v Inputs in Hollow Spheres

Calculations have been made for a step v input and a ramp v
input, but the results are not presented here, The general dis-
cussions for the corresponding cases in sheets are all applicable
to these spherical cases, The ramp v inputs with decreasing values

of k approach the step Vv input,

I, Exponential o Input in Hollow Spheres

The input in this case is an exponential function, o, = poe-at,

applied at the hole, Extensive calculations have been performed for
this problem by Allen and Goldsmith [10] with an electronic calculator,
using the Laplace transform solution by Sharpe [9] as a basis, This

input has special significance in simulating the effect of explosive

21



charge detonated in contact with a metal, It also has practical
applications in underground explosions and in geophysics, The
purpose of the inclusion of this case is to demonstrate the accuracy
and ease of application of the present method. The same dimensional

constants for steel are used in the present method as in [10],

These are:
Eo = 2,139 megabars P, = 0.283 megabars
p = 7.849 g/cc o = 2 sec !
v = 0,31 r =1,5cm
o o

The results are shown in Fig, 11, in the form of Ger Tgo and v vs, r
curves, with t as a parameter., The results from [10] are indis-
tinguishable from these curves by the present method, except the

0. curve with t = 2usec in Fig, 1la, Here; our results show a dip

while Ref. [10] gives no dip, It is believed that our results are

correct and a slight error in involved in [10].
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VI,

CONCLUSIONS

The method of characteristics has been successfully applied
to the propagation of cylindrical and spherical dilatational
waves in elastic media, Its simple recurrent finite-difference
equations are most adaptable to computer calculations, It can
readily give numerical solutions to problems with any input

functions,

Step inputs, in both o and v, produce more severe Stress con-
ditions than corresponding ramp inputs. Ramp inputs, with
decreasing rising time, approach the step input as a limit,
Thus, the step input should be used in calculating the upper

bounds of dynamic stresses,

For the case of a step o input applied to a sheet, the maximum
O is 24 percent higher than the static value, For a rectangu-

lar pulse input with proper width, the o, could be 54 percent

6
higher than the static value, The corresponding numbers for
the hollow sphere are 50 percnet for step . and 136% for

rectangular impulse input., These transient peak stresses may

be of significant importance in the dynamic crack propagation

and the dynamic strength of materials,

The method of characteristics could be easily extended to other
elastic wave problems, such as, the bending of plates including
shear effect and rotary inertia, non-linear large deflection

equations, and possibly even to bodies with two space variables,
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APPENDIX A

Derivation of Governing Equations

In this appendix, we shall derive the governing differential
equations for the propagation of plane longitudinal waves in ba}s,
sheets, and infinite bodies; the governing equations for cylindri-
cal waves in sheets and axisymmetric bodies; and the governing
equations for spherical waves, All these equations will then be
represented by one set of generalized equations,

For a plane wave traveling in an elastic medium according to
the elementary theory of wave propagation and neglecting the

dispersion effect, we have [15]

Wx  _ o*u
‘—a-x'& = f E't—,_ (A.1)

This is the governing differential equation for plane waves in

all three types of body geometry, (i.e., bar, sheet, and infinite
body). Hooke's Law, however, for each of these cases is different,
For plane waves traveling in an elastic bar, Hooke's Law is given

by
e L/’ (A.2)

where x is the coordinate along the axis of the bar, O is the
normal stress on a plane perpendicular to the axis of bar and u
is the displacement in x-direction, Eq. (A,1) is the equation of

motion, while (A,2) is Hooke's Law with € = du/ax,
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For a plane wave traveling along the x-dirvection in a shect

or thin plate, due to the constraint in y-direction, °y # 0 but

Ey =0, = 0 2
WAVE ONT
t‘ el Fr
i
r) —_— ¥
/4
/1
//
//
Y&
L W/

y

Figure A.1 A Plane Wave in a Sheet

According to the generalized Hooke's Law

&= g[n - %%+

or
OD = 2, Gy (':mucs Jz =0 )
Therefore,
A
_ au _ 1 _ _ | Bl 7
©x = 81'?[7" v"@] } Eo X

(o]

For a plane wave traveling along the x-direction in an
infinite elastic body, there are restraints in both y and z
direction, therefore ¢ = e¢_ =0 and g =o_, Or

y 4 Yy z

6EY = -%g- [ 7y - 24,(’7; + 0;5)] = O

o

- . _ %o
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The generalized Hooke's Law in the x-direction then gives

2
= /U _ ___'__[ - a0 = J-2o-2%%
éx ox Eo Vx J)O( J +G:E)] Eo("vo) O}'

The stress-strain relations (A.2), (A.4), and (A.6) may be

(A.6)

combined into one equation as

aw - \ (A.7)
ER E F
where
E = Eo for the bar (A.8)
E
E = E| = _|_-0777 for the sheet (A.9)
) o
Eo(( —7)0)

for the infinite
_ _ 2
! 25 21, body (A.10)

Eqs. (A,1) and (A.7), then, are the governing equations for plane

E = E, =

waves,
For a cylindrical dilatation wave, the equation of motion in

plane polar coordinates is

_o0r Tr -0 _ _QEH; A 11
o T TF = F et aan

The derivation of this equation can be found in any textbook in
static elasticity, with the body force replaced by the inertia
force, -p 32u/dt where u is the radial displacement., Eq. (A.1l1)

is applicable for both a sheet (plane stress) or an infinite
cylindrical body (plane strain), The Hooke's law equation, however,

assumes different forms. For the sheet, we have o, = 0,
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Plane Stress Plane Strain

Figure A.2 Cylindrical Waves in Sheets (plane stress)
and in Infinite Body (plane strain)

therefore

_ ou .
Er = i —E—o ( r - 2o 03) (A.12)
and
- u _ ( _
o = & = __Eo( T - ¥ ;) (A.13)

For the infinite cylindrical body, €, = 0, thus we have

€z = ’!gc [0%_ - ”o(o'r“‘de)]

(A 14)
Tz = 2o (Tr +0o)
Therefore,
= B8u -
E¢ = Tor E,,[vh ve (e +cr)] 1)
- '_7)92(0_ _ Yo o-) ’
Eo ¥ |"‘7Jo e
and
| Vo, )
o= 4= £ [%- 3 (0 + 0)| = 1225 - 25 O) (19
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Eqs. (A.12), (A.13), (A.15), and (A.16) may be represented by

two equations

au _ |

TS _ ( d. - 2 ) (A.17)
U |
- — __( (P Z’O}_} (A, 18)

where

E = E,
>  for sheets (A.19)
1 = 2,
J
— Eo ]

| -2¢
A.20
Yo 4 for infinite cylindrical ( )

l —7%5 body

E =

E,
v = Y

For a spherical dilatation wave involving only radial dis-
placement, the equation of motion is

o0¢ 2(Tr -Tp) — Q%
e+ s = p el (A.21)

This type of wave can only exist in an infinite body., The normal

stresses in the two directions orthogonal to r, due to symmetry,

must be equal, or O = c¢, therefore
_ au _ = -
€ = 5p = —E—[G}—Vo(¢9+q¢)] = —E—(crr 29,0g) (A.22)
o o
_2u _ | _ _ ]
) — ée - %._' - "E_[q-e o((rr + (ch)] - —E_[qe("yo) —1/00}] (A.23)
o Y ° o
p/ﬂ//
M
F All of the previously derived governing differential equations may

be consolidated into one set of equations, with r as the direction

of wave propagation,
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_ 2
oGr , N(Tr -Te) _ p U (A.24)

ar r 3 t?

pu _ | 3

u - Liq NV ) (A.25)
u oy ! N - c

N - N {0‘8[1 (N-1)1] ucrr} h.26)

where N, E, and v are constants, assuming different values according

to the rule:

N =

0

{(riane waves)

E=E in bar
o
E = E1 in sheet
E = E in infinite body

2

(cylindrical waves)

E=E_
in sheet
Vo=V
E = E,
in infinite cylindrical body
v =V,
1
(spherical waves)
E = E
o
N =V
o)

It should be noted that for the plane waves in bars and in

sheets, as well as the cylindrical waves in sheets, the governing

equations are approximate in nature, as discussed in any standard

text in elasticity. For the cases of plane, cylindrical and spheri-

cal waves in an infinite body, these equations are exact,
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Combining eqs. (A.24), (A.25), and (A,26), and eliminating o,

and Tgs We have

% 2 fu) - Lt 34U (A.27)
are ¥ Nar ) c* ot?

where
{

_[E [ - -] 7?7
¢ "[P [ -(N=-1)D - sz]] -2

is the velocity of wave propagation. For plane waves (N = 0),

in bars: .
E, = bar velocity (A.29)

© P

N
i
N
i

plate

- - [E = Eo  _ .
c= Cp = /Pi —/F( ) =  yelocity (A+30)

in sheets:

in infinite . _ ¢ o [Ep _ EoQi-27) _ dilatation .
bodies: PU1-v,-292)  velocity

For cylindrical waves (N = 1)

. . T late
in sheets: C=c = Eo = P ) (A.32)
P PO -3.2) velocity

_ B =)
e fF(I— 2 VA —y-292) (-39

= dilatation
For spherical waves (N = velocity

c f(l o(l—vo) _ dilat?tion (A.34)

-2, ) velocity

in infinite bodies: ¢
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From these equations, it may be seen that in bars, plane waves travel
at the bar velocity; in sheets, both plane and cylindrical waves
travel at the plate velocity; while in infinite bodies, all waves
(plane, cylindrical and spherical) travel at the dilatation velocity.

These results are summarized in Table A.1l,
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TABLE A,1

Constants for Different Cases

Bar Sheet Infinite Body
E, E, E, 7
<, cp c,

—_— Eo E1
— \)o \)1
_— cp c, |
— — E

0
— —_— v
o
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APPENDIX B

Method of Characteristics (For general reference, see [14].)

In this appendix, the method of characteristics as applied to
the system of eqs, (14), (15), and (16) is outlined for reference,
We consider in this discussion only regions in the physical plane

{r,t-plane) where the stresses and velocity are continuous, Hence
we may write
= Yrdr 4+ Q0dt
agy = 5y 5t
(B.1)
0, = odr + e dt
dde ar at

- v 2V
dv <9t,c:h- + atdt

We shall seek curves in the r,t-plane along which the deri-
vatives of Tps Ogo and v might be discontinuous, Such curves, when
they exist, shall be called the physical characteristics., Discon-
tinuity in the derivatives of 9. Ogo and v amplies that 30 _/3r,
oorlatn aoe/'c)rD aoe/atD av/ar, and 3v/3t are indeterminate along
the physical characteristics., If these six derivatives are con-
sidered as unknown variables, they are related by the six eqs., (14),
(15), (16), and {B,1) as follows:

80'r

- fW'aV = N(Ts-qy)
42 @y -o
23X R --y (52
dr%qi_t+dtg—g;r = dag,
dr%qrﬁ +d'l‘—éﬂﬁcﬁ = dde
dhg‘:‘ +dtg%— dv



where M = [1 - (N - 1) v]. Solving these equations for aar/ar,

we have

N(@o-G;) © o © o -

o 'VE (o} ”yé | ls

-V Y o Mg o o

d. d o o o o

dig, o dr dt o o

a0 - av o © o di’ | dt_ui

8r r o O o©o -pr
o .~ o Ny | o

o Y O M0 o

dr dt O o o o

o o d dt o o

o o © o dr d

{w

S I | 2] Aa dt
J = N ) * ‘"‘&dr) AA J
y I - CUNC ) &2y <E "

(B.3)

2
[u(qe ~q)dt + f’rdv] - pr [:’: da, (M-Nv?) - Ny ll{-clt]}>
This derivative is indeterminate if both the numerator and

denominator are equal to zero. The vanishing of the denominator

yields three physical characteristics,

+ dr
I char. gt = 4+ C
(B,4)
I Char_ .%_; = - C
I char dr = '®)

For dr/dt = + c, the vanishing of the numerator of (B.3) yields
the characteristic equations, which govern the variables U Tgo
and v along 1¥ and I° physical characteristics, These equations
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are, along dr/dt = + ¢,

dq.r- —’f—- PCd\/ = -N(G—‘.* 0—9) :t _PIJC V [i;ﬁl—:;)—v] d—r‘: (B"s)

From eq, (B.3), the characteristic equation along the physical
characteristic dr = 0 cannot be obtained, since (dr)2 also appears
in the numerator as a common factor., Solving the system of eqs,
(B.2) for aor/at, aoe/at, av/3r, or 3v/ot gives the same result as
eq, (B.3), i.e,, it yields the same three physical characteristics

1*, 17, II, and the same characteristic eqs. (B.5) along I* and I~

°

Solving for Boe/ar, however, we obtain a different result,

¢ %‘r_?_ T Lan3(ety L (gt * ”*[yéd“r - B do
\3/ E (d C)( dr C
| 2 (B.6)
;o Vth] 2 )[N(cre-cr,)dt +—f>rdv] N F,(d )

[+ (2o - 4, o]

The vanishing of the denominator gives the same three physical
characteristics I+, I7, and II as previously derived, The vanishing
of the numerator with dr/dt = + c yields the characteristic egs.
(B.5), In addition, the vanishing of the numerator with dr = 0

produces the characteristic equation along II, i.e.,

Xy _ [I—CN—\)U]—EM'—'E— L (B.7)
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